The Maintenance Priority for Construction Reliability and Sustainability in Ampel Mosque Surabaya

Agung Sedayu

Department of Architecture Engineering, Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University, Malang . Corresponding author: uinsedayu@gmail.com

Introduction

The Ampel Mosque Surabaya was founded in 1421. The Ampel Mosque was built in the architecture style of Javanese and Arabic, and now has developed an expansion of the mosque building and the arrangement of Sunan Ampel's tomb area. This study aims to determine the priority of maintaining the sustainability of Ampel mosque construction. Many factors in mosque building maintenance so that priority is required to determine the important maintenance steps

Fig. I. Ampel Mosque Tower

Fig.3. The combination of columns with beams as the frame support

Fig. 2. Side of Ampel Mosque

Fig.4. The main area of the mosque which the Ampel mosque development area

Material and Method

Table 1. The Previous Researches

Researcher	Year	Торіс	Method	Variable	
Komalasari	2014	Green Building assesment based on	Comparison study, modeling by using	Energy Efficiency Measure, Natural and artificial Lighting, Ventilation,	
		energy efficiency and conservation	software, and Direct measurement	Climate Change Impact, Vertical transportation, and Air condition system	
Adebara et. al	2014	Influence analysis of timber as building construction material	Investigated and Ranking and Quality control measures	Over cultivation, Poor irrigation practices, Domestic purposes, Deforestation, Economic productivity of the land, Resulting to the loss of biological,	
Sugiama	2015	Modeling at service quality in Green Open Space	Importance Performance Analysis (IPA), Focus Group Discussion (FGD), and Quality Function Deployment (QFD)	Water conservation, Environmental aesthetics, Air conservation, Overcome water disasters.	
Kusumawardani , et al	2016	Component description in façade element of Great Mosque Malang	Observation, Qualitative, Descriptive	Form, dimension, Material, Color, and Texture	
Sedayu 	2016	Performance evaluation in green building of Islamic Boarding School	Importance- Performance Analysis (IPA) and Quality Function Deployement (QFD)	Sustainable, Eco-Earth friendly, and High performance building	

I. Importance-Performance Analysis (IPA)

Importance-Performance Analysis (IPA) is conducted to obtain the level of user importances to the maintenance of the construction reliability

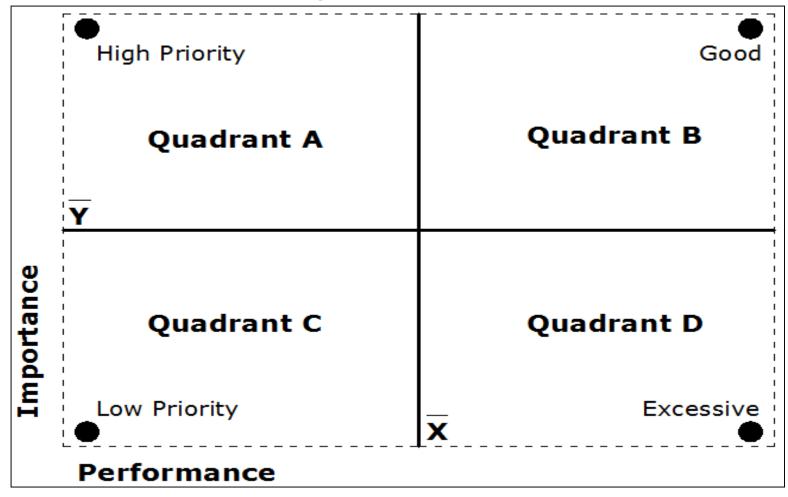


Fig.5. Importance Classification Diagram

2. Quality Function Deployment (QFD)

Quality Function Deployment (QFD) to know the improvement target of mosque construction reliability according to the user

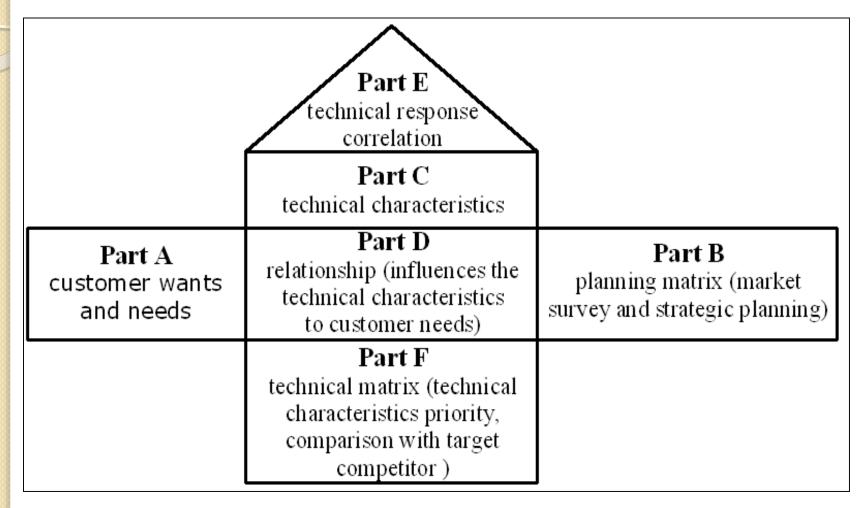


Fig.6. House of Quality in QFD

Result and Discussion

Table 2. The Research variables in Voice of User

No	Research variables	Mean	Rank
	Ease of construction work (workability) with easy and	3,821	3
	cheap technology		
2	Serviceability that is reliable and expert in construction	3,774	6
	supporting		
3	Durability of building construction within the service life	3,795	5
4	Security and safety are guaranteed during the functioning	3,818	4
	of the building		
5	Aesthetics visual architectural systems and building	3,726	7
	construction materials		
6	Comfort and regularity in psychical aspects during the	3,723	8
	functioning of building construction		
7	Ease and affordability in maintenance (Maintainability) of	3,927	I
	construction components		
8	Quality of maintenance performed on architectural and	3,877	2
	structural components of buildings		

Table 3. Results of IPA on the importance and satisfaction of Ampel Mosque

NIa	Maintananaa Faatana of Baliability Canatumatian	Mean Value		Gap
No	Maintenance Factors of Reliability Construction		TK	
	Construction work	3,703	3,631	0,072
2	Construction equipment	3,630	3,547	0,083
3	Construction Labor	3,852	3,832	0,020
4	Financing the implementation	3,878	3,856	0,022
5	Management of work	3,885	3,926	-0,041
6	Equilibrium system of construction	3,614	3,566	0,048
7	Stability of construction system	3,619	3,875	-0,256
8	Strength of construction system	3,832	3,669	0,163
9	Proportional and configuration in construction system	3,729	3,768	-0,039
10	Durability to functional destruction level	3,591	3,879	-0,288
11	Service time or work function	3,878	3,772	0,106
12	Level of visual destruction	3,626	3,837	-0,211
13	Guarantee from physical and psychological dangers of	3,419	3,729	-0,310
13	construction			
14	Non-hazardous building materials	3,498	3,974	-0,476
15	Design and configuration of non-hazardous construction systems	3,544	3,958	-0,414

Table 4. Results of IPA on the importance and satisfaction of Ampel Mosque

No	Maintenance Factors of Reliability Construction	Mean Value		Can
		KP	TK	Gap
16	Implementation and maintenance of non-hazardous			-0,378
	construction	3,489	3,867	
17	Aesthetics of structural materials	4,014	3,782	0,232
18	Aesthetics in system and construction configuration	3,648	3,733	-0,085
19	Aesthetics of architectural material	3,872	3,845	0,027
20	Aesthetic of construction craft details	3,858	3,878	-0,020
21	Convenience and regularity of building physical and			-0,133
Z 1	psychological	3,699	3,832	
22	Regularity in configuration system and building			-0,290
	construction	3,576	3,866	
23	Regularity of building construction material system	3,915	3,658	0,257
24	Regularity of non-structural materials in construction			0,030
_ 24	systems	3,845	3,815	
25	Comfort and regularity of outdoor design	3,496	3,911	-0,415
26	Ease and affordability of maintenance	3,673	3,725	-0,052
27	Availability of maintenance labor	3,832	3,754	0,078
28	Availability of maintenance costs	3,612	3,644	-0,032
29	Management of maintenance	3,842	3,846	-0,004
30	Maintenance methods are easy to understand and apply	3,667	3,851	-0,184

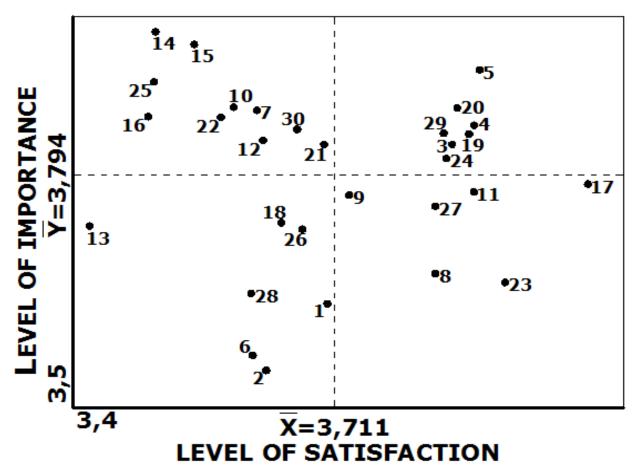


Fig.7. Importance Classification Diagram to Ampel Mosque

Ten variables have a high priority for improvement ie Non-hazardous building materials (no.14), Design and configuration of non-hazardous construction systems (no.15), Comfort and regularity of outdoor design (no. 25), Durability to functional destruction level (no.10), Stability of construction system (no.7), Implementation and maintenance of non-hazardous construction (no.16), Regularity in configuration system and building construction (no.22), Maintenance methods are easy to understand and apply (no.30), Level of visual destruction (no.12), and Convenience and regularity of building physical and psychological (no.21).

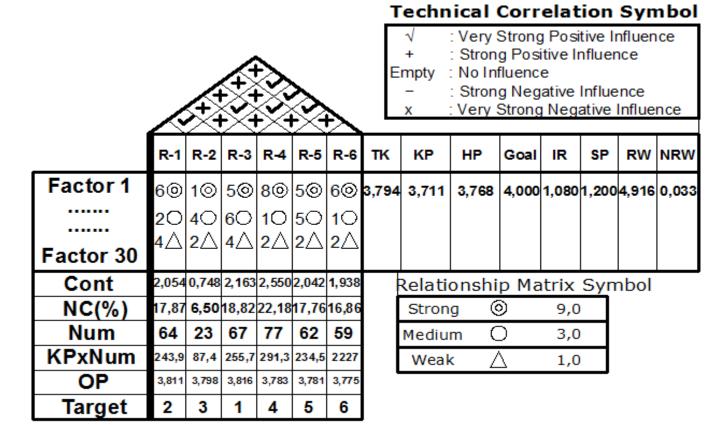


Fig.8. House of quality for quality improvement target at Ampel mosque Surabaya

 Table 8. The improvement target of maintenance quality of Ampel mosque

Target	Technical Response	OP
	Ensure the design and configuration of non-hazardous construction systems (R-3)	3,816
2	Ensure equilibrium, strength, stability, proportionality, and configuration of the construction	
	system (R-I)	3,811
3	Maintaining the durability of the structure against destruction in function and visual (R-2)	3,798
4	Ensure the implementation and maintenance of non-hazardous construction (R-4)	3,783
5	Maintain the comfort and regularity of indoor and outdoor of building physically and	
	psychically (R-5)	3,781
6	Implement maintenance methods that are easy to understand and apply an easy to apply	
	(R-6)	3,775

Workability:

- Construction work (P)
- Construction equipment (P)

Serviceability:

 Ensure equilibrium, strength, stability, proportionality, and configuration of the construction system configuration (P & T)

Durability:

 Keawetan terhadap tingkat kerusakan secara fungsional (P&T)

Comfort:

- Convenience and regularity of building physical and psychological (P&T)
- Regularity of non-structural materials in construction systems (P)

Security and safety:

- Design and configuration of nonhazardous construction systems (P & T)
- Guarantee from physical and psychological dangers of construction Function (P)

Maintainability:

- Ease and affordability of maintenance (P)
- Implementation and maintenance of nonhazardous construction (P & T)
- Maintenance methods are easy to understand and apply (P & T)

Fig. 9. Affinity diagram for improving maintenance quality Ampel of mosque Surabaya

Conclusion

 Research variables influenced the maintenance quality include Ease of workability, Serviceability, Durability, Security and safety, Aesthetic of architectural system visual and building construction materials, Comfort and regularity (Comfort and Regularity), and Ease and affordability in maintenance (Maintainability)

 Ten variables that received high priority for improvement ie Non-hazardous building materials, Design and configuration of nonhazardous construction systems, Comfort and regularity of outdoor design, Durability to functional destruction level, Stability of construction system, Implementation and maintenance of non-hazardous construction, Regularity in configuration system and building construction, Maintenance methods are easy to understand and apply, Level of visual destruction, and Convenience and regularity of building physical and psychological.

 Six technical responses to become improvement target to increase the maintenance effort of Ampel mosque building construction covers Ensure the design and configuration of non-hazardous construction systems, Ensure equilibrium, strength, stability, proportionality, and configuration of the construction system, Maintaining the durability of the structure against destruction in function and visual, Ensure the implementation and maintenance of non-hazardous construction, Maintain the comfort and regularity of indoor and outdoor of building physically and psychically, and Implement maintenance methods that are easy to understand and apply an easy to apply.

- Non-hazardous building material is the highest priority factor for improved maintenance. The second priority to be improved is the design and construction of a non-hazardous construction system
- Ensure the design and configuration of non-hazardous construction systems is the highest target for improvement, while technical response of Ensure equilibrium, strength, stability, proportionality, and configuration of the construction system is the second target to be improved.

